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Abstract

A comprehensive comparison of laminate failure models was established to assess the state-of-the-art in laminate modeling
technologies on an international level (known as the Worldwide Failure Exercise) [Compos. Sci. Technol. 58(1998) 1001,1011,1225].

In our first contribution to this Exercise (Part A), we presented a complete theoretical description of an analysis methodology and
documented predictions for the laminate response and failure behavior of various laminates under a broad range of loading con-
ditions [Compos. Sci. Technol. (in press)]. This paper represents our contribution to Part B of the Exercise where the laminate
response and failure predictions for fourteen different cases are presented and compared with actual experimental test data. The

cases include prediction of the effective nonlinear stress vs. strain responses of laminates, as well as, initial and final ply failure
envelope predictions under multi-axial loading. Correlation between the theoretical predictions and experimental results are dis-
cussed. While reasonable correlation was achieved, the failure analysis employed by the authors was not universally accurate in

predicting the laminate failure response for the broad range of test cases considered. This statement, although not surprising, is
likely true for any given failure methodology as it is applied to a wide range of laminate lay-ups and loading conditions.
Published by Elsevier Ltd.
Keywords: Composite laminate
1. Introduction

In our first contribution to the Worldwide Failure
Exercise (Part A), we presented a methodology for pre-
dicting the nonlinear stress/strain response and failure
behavior of composite laminates [1–4]. The theoretical
analysis is an incremental formulation of a well-estab-
lished three-dimensional laminated media analysis [5,6]
coupled with a progressive-ply failure methodology.
Nonlinear lamina constitutive relations for the compo-
sites are represented using the Ramberg–Osgood equa-
tion [7]. Piece-wise linear increments in laminate stress
and strain are calculated and superimposed to for-
mulate the overall effective nonlinear response. Indivi-
dual ply stresses and strains are monitored to calculate
instantaneous ply stiffnesses for the incremental solution
and to establish ply failure levels. The progressive-ply
failure approach allows for stress unloading in a ply and
discrimination of the various potential modes of failure.
The aforementioned laminate analysis and pro-
gressive ply failure methodology has been programmed
into a FORTRAN-based software code entitled
LAM3DNL. The LAM3DNL code employs a user-
friendly database format for input of laminate archi-
tectures, lamina properties, and failure parameters [8].
Output from the code includes the effective laminate
stress and strain files as well as a failure assessment
summary file that identifies all ply failures that occur
during a laminate response prediction program run.
In this paper, we compare our theoretical predictions

made in [4] with the experimental data for the fourteen
different laminate test cases described by Soden et al.
[9]. These test cases have been grouped into three classes
(a) biaxial failure envelopes of unidirectional lamina, (b)
bidirectional failure envelopes of multidirectional lami-
nates, and (c) stress vs. strain curves of laminates under
uniaxial and biaxial loading. For completeness, a
summary of the test cases investigated in the paper are
presented in Table 1. It is also noted that four different
materials were included in the study: (a) E-glass/MY750
0266-3538/$ - see front matter Published by Elsevier Ltd.
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epoxy, (b) E-glass/LY556 epoxy, (c) T300 graphite/BSL
914C epoxy, and (d) AS4 graphite/3501-6 epoxy.
Correlation between the theoretical predictions and
experimental results are discussed for each of the load
cases.
2. Correlation of predictions with experimental results

2.1. Loading case 1: biaxial failure envelope of (�y vs.
�xy) for [0] E-glass/LY556 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 1. The
solid lines represent the predicted failure envelope. The
predicted failure modes are indicated in bold print (Y12,
Y2C, Y3T, and Y2T); the key for these symbols is given
in Table 2. The dotted line on Fig. 1 indicates the pre-
dicted initial ply failure for the laminate (transverse
tension in the through-the-thickness direction). The
solid squares indicate the unidirectional strengths pro-
vided in the initial material property input (Table 1 in
Ref. [2]), and the open circle indicate the test results.
Reasonable correlation between experimental and

theoretical predictions is observed. Key points for com-
parison are intersections with the load axes. Dis-
crepancy between the transverse compression strength
prediction and the test data can be attributed to the
transverse compression strength originally provided as
input not agreeing with the experimental data obtained
to support this portion of the exercise.
There appears to be some degree of interaction

between the shear and transverse strengths that is not
captured by the maximum strain criteria used in the
present analysis. An interactive failure criterion such as
Tsai-Wu may be better at capturing the biaxial load
failure behavior.

2.2. Loading case 2: biaxial failure envelope of (�x vs.
�xy) for [0] T300 graphite/BSL 914C epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 2. As
with load case 1, reasonable agreement is observed for
the biaxial failure envelope. The experimental data and
the predictions both show no interaction between the
Table 1

Summary of the laminates and loading cases
Loading case
 Laminate lay-up
 Material
 Description of loading cases
1
 0
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope under transverse

and shear loading (�y vs. �xy)
2
 0
 T300/BSL914C
 Biaxial failure stress envelope under longitudinal

and shear loading (�xvs.�xy)

3
 0
 E-glass/MY750/HY917/DY063
 Biaxial failure stress envelope under long. and

transverse loading (�yvs.�x)
4
 90/�30/90
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope (�yvs.�x)
5
 90/�30/90
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope (�xvs.�xy)

6
 �55
 E-glass/MY750/HY917/DY063
 Biaxial failure stress envelope (�yvs.�x)
7
 0/�45/90
 AS4/3501-6
 Biaxial failure stress envelope (�yvs.�x)
8
 0/90
 E-glass/MY750/HY917/DY063
 Stress–strain curve under uniaxial tensile loading

for (�y:�x=0:1)
9
 �45
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=1:1)
10
 �45
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=1:-1)
11
�55
 E-glass/MY750/HY917/DY063
 Stress–strain curves under uniaxial tensile loading

for (�y:�x=1:0)
12
 �55
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=2:1)
13
 0/�45/90
 AS4/3501-6
 Stress–strain curves under uniaxial tensile loading in

y direction (�y:�x=1:0)
14
 0/�45/90
 AS4/3501-6
 Stress–strain curves for (�y:�x=2:1)
Table 2

Designations for predicted failure modes
Designation
 Predicted failure mode
Y1T
 Tensile failure in the fiber (1)

direction
Y1C
 Compressive failure in the fiber (1)

direction
Y2T
 Tensile failure in the transverse (2)

direction
Y2C
 Compressive failure in the transverse (2)

direction
Y3T
 Tensile failure in the through-the-thickness (3)

direction
Y3C
 Compressive failure in the through-the-thickness (3)

direction
Y23
 Interlaminar shear in the 23 direction
Y13
 Interlaminar shear in the 13 direction
Y12
 In-plane shear (12 direction)
478 T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485



applied shear stress and the fiber direction tensile stress
when the predicted failure mode is tensile failure in the
fiber direction. When the predicted failure mode is shear
dominated (Y12) the experimental data shows poten-
tially some interaction between the stresses that is not
predicted by the theory, but it is difficult to draw a
conclusion due to the significant scatter in the experi-
mental data, seen especially at �x=0. When the pre-
dicted failure mode is fiber compressive failure (Y1C)
there does not appear to be any interaction between the
stress fields in the theory or experimental results,
although this conclusion is again weakened by the scatter
in the data.

2.3. Loading case 3: biaxial failure envelope of (�y vs.
�x) for [0] E-glass/MY750 epoxy

A comparison of experimental results to theoretical
predictions for the biaxial failure envelope for this
unidirectional laminate is presented in Fig. 3. For the
limited amount of test data, good correlation was found
for this test case. The theory predicts that while the final
tensile and compressive failures in the fiber direction
(�x) are almost independent of the transverse stress-
state, the tensile and compressive failures in the trans-
verse (�y) direction are strongly influenced by the axial
(�x) stress due to the Poisson’s effects in the material.
The theoretical predictions are found to be consistent
with this general trend in the fourth quadrant of the
failure envelope. The uniaxial compression strength
prediction of �1=800 MPa and �2=0 MPa is due to a
Y3T failure that changes the in-plane behavior of the
lamina due to a drop in the transverse and through-the-
thickness moduli. The theory over-predicts the transverse
Fig. 2. Biaxial failure stresses for 0� lamina made of CRFP material.

Material: T300/914C.
Fig. 3. Biaxial failure envelope of 0� GRP lamina under combined �x
and �y stresses. Material: E-glass/MY750 epoxy.
Fig. 1. Biaxial failure stresses for 0� lamina made of GRP material. Material type: E-glass/LY556/HT907/DY063.
T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485 479



compressive strength of the laminate (Y2C) because it
neglects the nonlinear behavior of the stress–strain
curve under transverse compression.

2.4. Loading case 4: biaxial failure envelope of (�y vs.
�x) for [90/+30/�30]s E-glass/LY556 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 4. The
theoretical predictions for this load case indicate that
multiple ply level failures occur prior to the ‘‘final’’
laminate failure. The first predicted failure modes are
indicated by the dotted line in Fig. 4. For the entire
biaxial failure envelope, transverse tensile failures
(either in the 90� or �30� layers) are predicted to occur
first, followed by catastrophic of ‘‘final laminate fail-
ure.’’ Overall, the theoretical predictions match well
with the test results, with the exception of the predic-
tions made under load combinations involving trans-
verse (�y) compression. In this region (second and third
quadrants) the predictions of failure overestimate the
test results. The test results do not indicate the failure
mode or the extent of damage in the specimens. It is also
possible that the failure was dominated by the initial
transverse tensile failure of the 90� plies.

2.5. Loading case 5: biaxial failure envelope of (�x vs.
�xy) for [90/+30/�30]s E-glass/LY556 epoxy

A comparison of experimental results to the theo-
retical predictions for this load case is presented in
Fig. 5. Reasonably good agreement for this load case
was achieved except in second quadrant where the pre-
dictions somewhat underestimated the test results. In
this quadrant, failure is predicted to involve initial
transverse tension failure (Y2T) in the �30� plies, fol-
lowed by longitudinal compression failure (Y1C) in the
�30� plies. In the analysis, the transverse tensile prop-
erties (modulus and Poisson’s ratios) are reduced to
very small values when an initial failure is predicted.
This approximation may be too severe for these experi-
ments. In experiments, transverse cracking may occur,
but it may not be extensive enough to completely reduce
the mechanical properties in this direction. Thus, the
strength predictions are conservative. In the first quad-
rant, the predicted strengths are within the scatter of the
experimental data.

2.6. Loading case 6: biaxial failure envelope of (�y vs.
�x) for [+55/�55]s E-glass/MY750 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 6. The
general appearance of the correlation between the pre-
dicted strengths and the test results is good. The failure
envelope is governed by longitudinal compression strain
failure (Y1C) in the third quadrant and by longitudinal
tension strain failure (Y1T) in the first quadrant and in-
plane shear (Y12) failure in the second and fourth
quadrants. In the second, third, and fourth quadrants,
the predicted strengths are within the experimental
scatter. In the first quadrant, there is considerable var-
iation in the experimental strengths depending on the
480 T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485
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bined �x and �y stresses. Material: E-glass/LY556 epoxy.
 Fig. 6. Biaxial failure stresses for (�55�) E-glass/MY750 laminates.
Fig. 5. Biaxial failure stresses for (90�/�30�) laminate under �xy and

�x stresses.



test specimen geometry. The thin tubes tested without
liner give results consistent with the predicted first ply
failure (transverse tension or Y2T in the �55 plies). The
thin tubes tested with a liner appear to follow the pre-
dictions for a final failure (Y1T) in the �55 plies. More
data on the nature of the experimental failures for each
of the different specimens would be helpful in interpret-
ing these results. However, given the biaxial stress state
and the predicted multiple failure modes, the predic-
tions show reasonably good agreement with the experi-
mental results. The underprediction of the Y1C failures
in the third quadrant could be brought more in line with
the experimental data if the through the thickness stres-
ses were taken into account. Consideration of these
through thickness stresses would increase the appearant
Y1C value of the composite lamina.

2.7. Loading case 7: biaxial failure envelope of (�y vs.
�x) for [0/+45/�45/90]s AS4 graphite/3501-6 epoxy

A comparison of experimental results to the theo-
retical predictions for this load case is presented in
Fig. 7. The predictions show good correlation with the
experimental results in the first quadrant where the pre-
dicted failure mode is tensile in the fiber direction of the
0 plies and in the fourth quadrant where the predicted
failure mode is compressive in the fiber direction of the
90� plies. In the third quadrant, the experimental results
appear to match more closely with the predicted initial
failure mode (through-the-thickness tensile failure or
Y3T) than the predicted final failure mode (Y1C in the
0� or 90� plies). This good correlation is likely coin-
cidental as the model neglects the three dimensional
through the thickness stresses due to the externally
applied radial pressure. These through the thickness
stresses, if taken into account in the predictions, would
also alter the location of the Y3T line.

2.8. Loading case 8: stress–strain curves of
(�y:�x=0:1) for [0/90]s E-glass/MY750 epoxy

A comparison of experimental results to the theore-
tical predictions for this load case is presented in Fig. 8.
The predictions are in excellent agreement with the test
results for this load case. A predicted transverse tensile
failure in the 90� plies at "x=0.25% is associated with
the observed initial cracking point on the stress versus
strain curve. In the theoretical model, when the initial
transverse tensile failure occurs in the 90 plies, the
properties are reduced immediately (thus the sharp drop
in the theory). In the experiment, the transverse crack-
ing occurs progressively and the properties are reduced
over a larger strain region (thus the theoretical and
experimental curves show a slight difference after the
initial failure occurs). Although the model does not
predict the second observed failure mode of ‘‘long-
itudinal splitting’’, the ultimate load due to fiber tensile
failure in the 0� plies was accurately predicted. The pre-
dicted Poisson strains ("y) are also in good agreement
with the test results.

2.9. Loading case 9: stress–strain curves of
(�y:�x=1:1) for [+45/�45]s E-glass/MY750 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 9. The
theoretical predictions are in good agreement with the
test results in the initial loading portion of the stress
T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485 481
Fig. 7. Biaxial failure stresses for (0�/�45�/90�) AS4/3501-6 lami-

nates.
Fig. 8. Stress–strain curves for 0�/90� E-glass/MY750 laminate under

uniaxial tension.



versus strain curve. The point where first cracks were
observed correlates with the prediction of transverse
tensile failure in the �45� plies. At this point, the model
drops the transverse tensile properties, over-predicting
the damage in the laminate. The experimental results
show a more gradual reduction in properties, showing
reasonably good correlation with the theory up until
about 2% strain. Beyond this point the analysis predicts
a higher stress at ultimate failure (predicted to be tensile
failure in the fibers). It is possible that in the experi-
ments the accumulated transverse matrix cracking
caused the final failure before the predicted fiber tensile
failure could occur.
The following statement applies to load cases 9–12.

The over prediction of the stress responses for the
laminates could be partially attributable to the fact that
the current model does not account for changes in the
tubular specimen geometry due to rotation (scissoring)
of fibers and due to the radial expansion or contraction
in the diameter.
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Fig. 9. Stress–strain curves for �45� E-glass/MY750 laminate under C=s� ¼ 1=1.
Fig. 10. Stress–strain curves for �45� E-glass/MY750 laminate (�y/�x=1/�1).



2.10. Loading case 10: stress–strain curves of
(�y:�x=1:-1) for [+45/-45]s E-glass/MY750 epoxy

A comparison of experimental results to the theore-
tical predictions for this load case is presented in Fig. 10.
The initial slope of the stress versus strain predictions
matched well with the test results, but the data sets
diverge at strains beyond 1% where the predictions are
much stiffer than the test results. The predicted ultimate
failure strain was far less than the experimental. Again,
this large discrepancy between model predictions and
the test data could be associated with the fact that the
model does not account for fiber rotations and tubular
specimen geometry changes.

2.11. Loading case 11: stress–strain curves of
(�y:�x=1:0) for [+55/�55]s E-glass/MY750 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 11. The
predictions of the stress strain response for this load
case were in good agreement with the test data up to
just over 2% strain, where ultimate laminate failure
(shear failure in the �55� plies, Y12) was predicted. As
with the previous load case, the test data indicates that
the laminate was able to carry load well beyond the
predicted point of ultimate failure. Model predictions
for failure are at much lower strain levels than the test
date for reasons explained above.

2.12. Loading case 12: stress–strain curves of
(�y:�x=2:1) for [+55/�55]s E-glass/MY750 epoxy

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 12. The
predictions for the initial portion of both of the stress
versus strain responses are in good agreement with the
test results. At approximately 150 MPa, a transverse
tensile failure (Y2T) is predicted in the �55 ply. In the
model, the properties are reduced immediately. In the
experimental results, the transverse damage accumulates
in a progressive manner so that the experimental results
are initially stiffer, but become more compliant than the
predictions. Better correlation with between the pre-
dicted and measure response in the tubular specimens
could be achieved if the model was modified to account
for fiber re-orientation due to large deformation.

2.13. Loading case 13: stress–strain curves of
(�y:�x=1:0) for [0/+45/�45/90]s AS4 graphite/3501-
6 epoxy.

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 13. In
general, the predictions are in good agreement with the
test results for this load case, for both the axial and
Poisson strains. At approximately 0.44% strain, trans-
verse tensile failure (Y2T) is predicted in the 90� plies.
The experimental results do not show a reduction in
properties at this point and therefore appear stiffer for
the rest of the stress-strain curve. This difference could
again be due to the immediate reduction in properties in
the model. In the experiment, transverse cracking may
have occurred in a more progressive manner (the
experimental curve shows a slight deviation from linear
behavior). Not surprisingly, ultimate laminate failure is
dominated by longitudinal tension failure in the 0� plies,
Y1T.

2.14. Loading case 14: stress–strain curves of
(sy:sx=2:1) for [0/+45/�45/90]s AS4 graphite/3501-
6 epoxy.

A comparison of experimental results to theoretical
predictions for this load case is presented in Fig. 14. As
T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485 483
Fig. 12. Stress–strian curves for a� laminate made of E-glass/MT750

epoxy material under �y/�x=2/1.
Fig. 11. Stress–strain curves for �55� GRP laminate under uniaxial

tension (�y/�x=1/0).



with the previous load case, predictions for the quasi-
isotropic graphite composite laminate are in good
agreement with the test results. Transverse tensile failure
in the 90� plies, Y2T, is predicted early in the load his-
tory (about 0.5% strain) and this seems to correlate
with the nonlinear softening of the laminate stress strain
response. The predicted transverse tensile (Y2T) failure
of the �45 plies occurs at the same location as a load-
drop in the experimental results. As in Loading Case 13,
ultimate laminate failure is dominated by longitudinal
tension failure in the 0� plies, Y1T. The lower predicted
failure strength could be due to assuming complete
degradation of transverse properties in the 90� and �45
plies in the model, while experimentally only a partial
degradation in properties occurs.
3. Conclusions

Correlation between the theoretical predictions and
experimental results were presented and discussed.
While reasonable correlation was achieved for most of
the case studies, the failure analysis employed by the
authors was not universally accurate in predicting the
laminate failure response for the broad range of test
cases considered. This statement, while not surprising, is
likely true for any given failure methodology as it is
applied to a wide range of laminate lay-ups and loading
conditions. In several cases examined in this exercise,
over prediction of the stress responses for the laminates
could be partially attributable to the fact that the cur-
rent model does not account for changes in the tubular
specimen geometry due to rotation (scissoring) of fibers
and due to the radial expansion or contraction in the
diameter. This is one example of the inherent variability
or special circumstances that one may encounter in
composites modeling that will ultimately contribute to
difficulties in consistently correlating theoretical and
experimental predictions.
In general, a composite failure model is essentially a

combination of assumptions, approximations and phy-
sical laws which are made to establish a tractable esti-
mation of composite failure. The relationships between
microstructural effects, statistical variations and com-
posite failure are vastly too complex to be completely
addressed in the most comprehensive failure model.
This is especially true in many of the cases presented in
484 T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 477–485
Fig. 13. Stress–strain curves for (0�/�45�/90�) laminate under uniaxial tension (�y/�x=1/0).
Fig. 14. Stress–strain curves for (0�/�45�/90�) laminate under biaxial

stress (�y/�x=2/1).



this study where multiple failure modes occur prior to
the final laminate failure.
It is the authors’ opinions that no truly universal

composite laminate failure model or analysis exists.
Even the most sophisticated ‘‘state-of-the-art’’ models
are not capable of predicting the broad range behavior
exhibited under a variety of materials, lay-ups and
loading conditions. At best, those failure models that
capture the ‘‘widest’’ range of behavior—with reason-
able effort—are most valuable as predictive tools. The
failure theories used should be relevant and proven
within a given application. This is to say that the busi-
ness of predicting composite laminate failure can per-
haps be just as easily viewed from an engineering
perspective than it can from a scientific one.
It is worth pointing out that a comparison between

the results of the present model and those of other
models, employed in the failure exercise, is presented in
Ref. [10].
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